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Outline

e Complex systems: some basics e Simple network models

e Random Matrix Theory and nuclear ® Possible extensions
physics

e Applications to complex systems
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What is an electric grid?

e NODES: generating stations,
substations of various types

e EDGES: High-voltage transmission
lines

¢ Interested in network topology,
stability.

¢ \ery simple model- no differentiation
between sources and sinks, no load.
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Properties of complex networks

e Number of nodes N

e Degree k: number of edges directly attached to a node
e Degree distribution p(k)

e Scale-free: p(k) ~ k“

k/K

e Exponential: p(k) ~ e

e Often, this is what we can measure.




Adjacency matrices

° Aij = NN if nodes i,j are connected by N lines

e 0 otherwise




Eigenvalues of A

¢ Find spectrum of this matrix. Why?

¢ Eigenvalues and eigenvectors provide a label-independent way of measuring
the properties of the network.

e Dm=number of paths that return to starting node after m steps.

e Can provethat D,, Z()\j)m
j=1

¢ Eigenvalues tell you something about graph topology.




Robustness and sensitivity

¢ In a complex, interacting network, e One important question: under what
faults or accidents in one part affect conditions are networks chaotic?
the entire network.

® The study of complex networks is
the study of the ways in which
perturbations propagate through a
system.

® The field is very new. We are still
developing tools to understand large
systems.




A short detour into nuclear physics

e Heavy nuclei are complex systems

¢ |nteractions between nucleons are
known, but in practice direct
calculation is intractable.

e Need a statistical description.

e Energies of the system are
eigenvalues of Hamiltonian H.

* H is a large random matrix.
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Symmetry and probability distributions

H11 H12

H271 H2,2
H = . :

HN1 HNQ

e Probability conservation: H — ]‘]Jr

o If time-reversal-invariant: [ — HT




Symmetry and probability distributions

Hyy Hyo -+ Hin

Hy1 Hoo -+ Hoan
H =

Hyxi1 /Hy2 -+ Hpyn

/

Gaussian-distributed independent random variables:
dlH] = || dH;;

1]




Joint probability distribution

¢ \We can calculate the joint probability distribution of these matrix elements
assuming O(N) symmetry:

P(H)d[H] = Ny exp (%tr(Hﬂ)) dIH]

e N is the size of the matrix

* The parameter’Ydefines the mean level density and is determined empirically.

e For details see Mehta (1991).




Gaussian Orthogonal Ensemble

e Assuming time reversal symmetry, can diagonalize H:

H=0"1AO

e So can write the probability distribution in terms of the eigenvalues:

P(H)d[H] = NydO exp (% > Eg-') [11E: - Ej| [ ] 4Ex
i K

i<

e Define level density:

p(E) = Y 8(E - B)




Wigner semicircle distribution

¢ For the GOE, can show eigenvalue density is described by a semicircle:
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GOE, continued

e The symmetries of the system uniquely determine the behavior of the energy
spectrum.

® The joint probability vanishes when Ei=Ej: level repulsion.

¢ “Unfold” spectrum so mean level spacing is one:

E
0

e Convenient to consider Nearest Neighbor Spacing Distribution:

g2
Poog(s) = ;—FEKIJ ( z )




Contrast: noninteracting system

e Here, Hamiltonian is constrained to be diagonal (no interaction terms).

P(H)d[H] = Ny [ [ exp ( % HE) dH ;.

® No level repulsion.

e Eigenvalues are uncorrelated random variables.

e NNSD is Poisson:

P(s)=¢"°




Gaussian Orthogonal Ensemble




s=0 most likely: energy levels
cluster together.

Gaussian Orthogonal Ensemble




Gaussian Orthogonal Ensemble

s=0 least likely: energy_levels repel
each other.

NNSD




Quantum Chaos @ conjectures




Chaos vs. Regularity

e These distributions appear in the study of quantum chaos.

¢ Two main conjectures underly the field:

e Bohigas-Giannoni-Schmit: Spectra of systems whose classical analogues are
fully chaotic show correlation properties consistent with the Gaussian
ensembles.

e Berry-Tabor: Spectra of systems whose classical analogues are fully regular
show correlation properties best described by Poisson statistics.

e Intuitively, independent variables behave in a regular way. Large correlations
induce chaos.




Order to Chaos

¢ Real nuclear data marks
integrability to chaos transition.

e Chaos here is induced by the
breaking of dynamical
symmetries.

¢ Many more degrees of freedom
than conserved quantities.

e Clear Poisson to GOE transition.




Measuring intermediate distributions

e \Want distribution that interpolates
between GOE and Poisson.

p(s) = (1 + B)a”*" exp(—as”™)

B 3+ 2
H_F(ﬁ——}—l)

e Brody parameter=1 for GOE, 0O for
Poisson.




Back to the gria

e For a complex network, the analogue of the Hamiltonian H is the adjacency
matrix A.

e Often, the only thing we can measure about a grid is its degree distribution.
¢ In most circumstances, this is exponential:

p(k) ~ e k"
¢ Given this information, what can we say about the underlying grid statistics?

e Under what circumstances should we expect chaos?




— NNSD
- Wigner surmise

co® @ ®O o."‘.

Erdos-Renyi random graph:

nodes are connected with probability p.




Exponential distributions

e Eigenvalue density for networks with
varying mean degree.

* Peak at 0: nodes with connectivity 1 215}
interacting with highly connected
node.

e Peaks at +=1: connected pairs
disconnected from greater network.

e Peaks decrease with increasing
mean degree.




GOE vs. Poisson for exponential networks

e Consistent with GOE for mean
degree greater than 2.

e Consistent with Poisson otherwise.

e Giant component size:

S — %EU‘“‘ (3 —Vael/n — 3)

*  size of giant component (measured) ||
- - size of giant component (theoretical)

s




Linking networks: superposition

e Consider two copies of the same network. If they are completely
disconnected, their NNSD should be given by superposed GOEs:

— Simulation

- Pé'_rflaE(S)

PG = 35 {51 (5) |

Ey(x) = fm (1— F(t)) dt

t
1
F(t) = [ Pop()is




Connecting with a single edge

e L inking the two networks with a single edge produces a strange distribution.

— Simulation

i2)
- = Fgop(s)




Describing interconnection

¢ In the absence of connections between networks, adjacency matrix is block
diagonal:

A, 0O
0 A

e Connections add off-diagonal elements:

A= Ao+ Aint




Nuclear symmetry breaking

e Same formalism is used to describe
symmetry breaking in nuclear
systems.

GUHR AND WEIDENMULLER

T T T T T 1

e [f symmetry is exact, Hamiltonian is
block-diagonal, with blocks labeled
by values of the good quantum
number.

{a)

¢ \Weak symmetry breaking mixes
eigenstates.

® |nsensitive to relative size of blocks.




Distributed Networks

Small clusters linked together




Distributed networks

e Model by linking m identical regions of equal size N.

¢ |[=number of interconnectors. For I/N <<<1, get Poisson statistics for m of
order N/100.

e However, for sufficiently large I/N, retain GOE distribution even for m of order
N.

¢ \Within each region, eigenvalues highly correlated, so any fault or fluctuation
propagates through entire region.




Simulation . Simulation

GOE _
Poisson | --- Poisson

Single interconnector: get Poisson distribution for m=10




. Simulation
Simulation GOE
GOE \
Poisson

Poisson

|=2: do not get Poisson distribution even for m=50.




Conclusions

e Grids matter. They provide context and help us to ask the right questions.

e Surprising tools from nuclear physics can help us understand the connectivity
and correlation properties of large complex systems.

e The NNSD helps to illustrate correlations between nodes in a system and
provides insight into how failures and fluctuations propagate.

e More work is needed to incorporate network topology information with existing
load flow models.

e Controlling chaos through strategic load management?




